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Abstract. The evolution of the two-point functions of autonomous one-dimensional single-species reaction-
diffusion systems with nearest-neighbor interaction and translationally-invariant initial conditions is inves-
tigated. It is shown that the dynamical phase structure of such systems consists of five phases. As an
example, a one-parameter family is introduced which can be in each of these phases.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 02.50.Ga
Markov processes

1 Introduction

Reaction-diffusion systems, is a well-studied area. People
have studied reaction-diffusion systems, using analytical
techniques, approximation methods, and simulation. The
approximation methods may be different in different di-
mensions, as for example the mean field techniques, work-
ing good for high dimensions, generally do not give correct
results for low dimensional systems. A large fraction of an-
alytical studies, belong to low-dimensional (specially one-
dimensional) systems, as solving low-dimensional systems
should in principle be easier [1–13].

The term exactly-solvable has been used with differ-
ent meanings. In [14–16], integrability means that the
N -particle conditional probabilities’ S-matrix is factorized
into a product of 2-particle S-matrices. In [17–26], solv-
ability means closedness of the evolution equation of the
empty intervals (or their generalization).

In [27], a ten-parameter family of reaction-diffusion
processes was introduced for which the evolution equa-
tion of n-point functions contains only n- or less-point
functions. We call such systems autonomous. The aver-
age particle-number in each site has been obtained ex-
actly for these models. In [28,29], this has been gener-
alized to multi-species systems and more-than-two-site
interactions.

Among the important aspects of reaction-diffusion sys-
tems, is the phase structure of the system. The static
phase structure concerns with the time-independent pro-
files of the system, while the dynamical phase structure

a e-mail: mamwad@mailaps.org

concerns with the evolution of the system, specially its re-
laxation behavior. In [30–33], the phase structure of some
classes of single- or multiple-species reaction-diffusion sys-
tems have been investigated. These investigations were
bases on the one-point functions of the systems.

Here we want to study the two-point functions
of autonomous single-species one-dimensional reaction-
diffusion systems. Throughout this study, the initial condi-
tion of the system is taken to be translationally-invariant,
so that it remains translational-invariant during the evolu-
tion. The two-point function for such systems is obtained,
and it is shown that it exhibits a non-trivial dynamical
phase structure. In Section 2, the evolution equation of the
two-point function is obtained. In Section 3, this equation
is solved and the corresponding energy-spectrum is ob-
tained. In Section 4, the parameter space of the system
is analyzed. In Section 5, the dynamical phase structure
of the system (the different phase regions in the parame-
ter space) is investigated. Finally, Section 6 is devoted to
a one-parameter example family, which can be in all five
phases.

2 Evolution equations
of the one- and two-point functions

Consider a one-dimensional periodic lattice, every point
of which is empty or contains one particle. Let the lattice
have L+1 sites. The observables of such a system are the
operators Nα

i , where i with 1 ≤ i ≤ L+1 denotes the site
number, and α = 0, 1 denotes the hole or the particle: N0

i
is the hole (vacancy) number operator at site i, and N1

i is
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the particle number operator at site i. One has obviously
the constraint

sαNα
i = 1, (1)

where s is a covector the components of which (sα’s) are
all equal to one. The constraint (1), simply says that ev-
ery site is either occupied by one particle or empty. A
representation for these observables is

Nα
i := 1 ⊗ · · · ⊗ 1

︸ ︷︷ ︸

i−1

⊗Nα ⊗ 1 ⊗ · · · ⊗ 1
︸ ︷︷ ︸

L+1−i

, (2)

where Nα is a diagonal 2 × 2 matrix the only nonzero
element of which is the α’th diagonal element, and the
operators 1 in the above expression are also 2×2 matrices.
It is seen that the constraint (1) can be written as

s · N = 1, (3)

where N is a vector the components of which are Nα’s.
The state of the system is characterized by a vector

P ∈ V ⊗ · · · ⊗ V
︸ ︷︷ ︸

L+1

, (4)

where V is a 2-dimensional vector space. All the elements
of the vector P are nonnegative, and

S ·P = 1. (5)

Here S is the tensor-product of L + 1 covectors s.
As the values of the number operators Nα

i are zero or
one (and hence Nα

i ’s are idempotent), the most general
observable of such a system is the product of some of these
number operators, or a sum of such terms. Moreover, the
constraint (1) shows that the two components of Ni are
not independent. so, one can express any function of Ni

in terms of
ni := a ·Ni, (6)

where a is an arbitrary covector not parallel to s. Our
aim is to study the evolution of the two-point functions
constructed by ni’s.

The evolution of the state of the system is given by

Ṗ = H P, (7)

where the Hamiltonian H is stochastic, by which it is
meant that its nondiagonal elements are nonnegative and

S H = 0. (8)

The interaction is nearest-neighbor, if the Hamiltonian is
of the form

H =
L+1
∑

i=1

Hi,i+1, (9)

where

Hi,i+1 := 1 ⊗ · · · ⊗ 1
︸ ︷︷ ︸

i−1

⊗H ⊗ 1 ⊗ · · · ⊗ 1
︸ ︷︷ ︸

L−i

. (10)

(It has been assumed that the sites of the system are iden-
tical, that is, the system is translation-invariant. Other-
wise H in the right-hand side of (10) would depend on i.)
The two-site Hamiltonian H is stochastic, that is, its non-
diagonal elements are nonnegative, and the sum of the
elements of each of its columns vanishes:

(s ⊗ s)H = 0. (11)

Here H is a 4×4 matrix (as the system under consideration
has two possible states in each site and the interactions
are nearest neighbor). The non-diagonal elements of H are
nonnegative and equal to the interaction rates; that is, the
element Hα

β with α �= β is equal to the rate of change of
the state β to the state α. α and β, each represent the
state of two adjacent sites. For example if α = 01 and
β = 10, then Hα

β is the rate of particle diffusion to the
right.

Using

s⊗ s(a ·N)⊗ (b ·N)H = aα bβ Hαβ
γδs⊗ sNγ ⊗N δ, (12)

where a and b are arbitrary covectors, one can write down
the evolution equations of the one- and two-point func-
tions of ni’s. It turns out that in the evolution equation of
the one-point function, there are two-point functions, and
in the evolution-equation of the two-point function, there
are three point functions, unless the reaction rates satisfy
the following constraints [27–29]

eAα
γδ = e

1Aα
γ sδ + e

2Aα
δ sγ , (13)

where

1Aα
γδ :=sβ Hαβ

γδ

2Aα
γδ :=sβ Hβα

γδ. (14)

It can be seen that one can summarize the constraints (13)
in the compact form

H u⊗ u = λu ⊗ u, (15)

where

u :=
(

1
−1

)

, (16)

and it is obvious that

s · u = 0. (17)

Now, consider a system satisfying the constraints (13)
(or equivalently (15)), and take the vector v satisfying





2
∑

d,e=1

d
eA



v =0,

s · v = 1, (18)

and the covector a such that

a · u = 1, a · v = 0, (19)
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that is, the basis {a, s} is dual to {u,v}. This choice of
a makes the evolution equation of 〈a · N〉 homogeneous.
In [28,29], it is shown that the matrix in the left-hand
side of the first equation in (18), has a left eigenvector
with the eigenvalue zero. (This left eigenvector is s.) So it
does have a right eigenvector with the eigenvalue zero as
well. That is, there does exist a vector v satisfying (18).
In fact, one can even find a real vector v satisfying (18).
From now on, a in (6) is assumed to satisfy (19).

Assume further, that the initial condition is
translational-invariant. This means that the one-point
function is independent of the site, and the two-point func-
tion depends on only the difference of the sites’ numbers.
It turns out that the evolution equation for the one-point
function is

df

dt
= (µ + ν)f, (20)

where
f := 〈ni〉, (21)

and

µ =s⊗ aH u ⊗ v + a ⊗ sH v ⊗ u,

ν =s⊗ aH v ⊗ u + a ⊗ sH u⊗ v. (22)

Also, taking
Fi := 〈nk nk+i〉, (23)

one arrives at

dFi

dt
= µ(Fi−1 + Fi+1) + 2ν Fi, 1 < i < L

dF1

dt
= µ F2 + (ν + λ)F1 + ρ f + σ, (24)

where

ρ :=a ⊗ aH (u⊗ v + v ⊗ u),
σ :=a ⊗ aH v ⊗ v. (25)

From the definition (23), it is also seen that

FL+1−i = Fi. (26)

It is seen that only five parameters enter the evolution
equation of the up-to-two-point functions, and all of these
can be expressed in terms of the matrix elements of

H̄ := H + Π H Π, (27)

where Π is the permutation matrix. These parameters can
be rewritten as

µ :=s⊗ a H̄ u⊗ v

ν :=s⊗ a H̄ v ⊗ u

λ :=
1
2
a ⊗ a H̄ u ⊗ u

ρ :=a ⊗ a H̄ u⊗ v

σ :=
1
2
a ⊗ a H̄ v ⊗ v. (28)

3 Solution of the evolution equations

The solution to (20) (the evolution equation of the
one-point function) is easily seen to be

f(t) = f(0) exp[(µ + ν)t]. (29)

Putting this in (24), the second equation becomes

dF1

dt
= µ F2 + (ν + λ)F1 + ρ f(0) exp[(µ + ν)t] + σ. (30)

This, combined with the first equation of (24), and the
constraint (26), are sufficient to obtain the two-point
functions from their initial value. To do so, one takes a
solution like

Fi(t) =
∑

E

Fi E(0) exp(E t), (31)

and puts it in the equations. From the first equation
of (24), one arrives at

E Fi E(0) = µ[Fi−1 E(0) + Fi+1 E(0)] + 2ν Fi E(0),

1 < i < L. (32)

(30) becomes

EF1 E(0)=µF2 E(0)+(ν+λ)F1 E(0)+ρf(0) δµ+ν,E+σ δ0,E .
(33)

To solve (32), one takes

Fi E(0) = cE zi + dE z′ i. (34)

Putting this in (32), one arrives at

E = µ(z + z−1) + 2ν. (35)

The equation for z′ is similar, and in fact z′ is the inverse
of z. Then, using (26), one can write (34) as

Fi E(0) = cE

(

zi + zL+1−i
)

. (36)

Putting this in (33), one can obtain the coefficient cE .
For E = µ + ν, or E = 0, the equation for cE is a

nonhomogeneous one, and cE is obtained. For E different
to the above values, the equation for cE is a homogeneous
one, and only for certain values of E there exist nonzero
solutions for cE . These values of E are among the
eigenvalues of H, of course. Using (36, 33), and (35), the
condition for cE being nonzero is seen to be

µ
[

z−(L+1)/2 + z(L+1)/2
]

=(λ−ν)
[

z−(L−1)/2 + z(L−1)/2
]

.

(37)
Some of the roots of this equation (for z) are phases (their
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absolute value is one). In the thermodynamic limit (L to
infinity) it is easy to find the nonphase solutions. It is seen
that if a solution has absolute value less than one, then in
the thermodynamic limit,

z =
µ

λ − ν
, (38)

and it is obvious that such roots of (37) are real. So, in
the thermodynamic limit, the energy values E entering
the translationally-invariant two point function are zero,
(µ + ν), the values coming from (35) with |z| = 1, and
possibly only one other value coming from (35) with z
satisfying (38). The largest nonzero value of E, determines
the relaxation time towards the equilibrium.

One point should be noted. In general, the limit of the
largest relaxation time of a finite system, as its size tends
to infinity, may differ from the relaxation time of the in-
finite system. It can be shown, however, that it is not the
case for our system. In fact, if one solves the eigenvalue
equation for the infinite system, one has to omit the pe-
riodicity condition (26), and use instead a condition that
the two-point function does not blow up in the limit that
the distance between the two points tends to infinity. This
means that either z and z′ (the inverse of z) are unimod-
ular, or in (34) there remains only one term, the term
corresponding to the one with modulus less than one. For
the latter case, one again recovers (38). So, the spectrum
of the infinite system, is in fact equal to the limit of the
spectrum of the finite system with periodic boundary con-
ditions, in the infinite-size limit. It is of course true that if
in the initial condition, the coefficients of some eigenvec-
tors vanish, then the relaxation time may differ from the
largest relaxation time. But this happens independent of
the size of the system. Another case when the relaxation
behavior of the infinite system differs from the limit that
of the finite system, is when the spectrum becomes con-
tinuous to zero, that is, in the infinite limit system, there
is no eigenvalue gap between zero and the other part of
the spectrum. In this case, the relaxation behavior of the
infinite system may be a power law, rather than exponen-
tial decaying. But again this is not the case for the present
system. To summarize, in the present system the largest
relaxation time of the infinite system is equal to the limit
of the largest relaxation time of the finite system.

4 The parameter space determining
the energy-spectrum of the two-point
functions

Consider a one-dimensional single-species nearest-
neighbor-interacting system, for which the evolution
equations of up-to-n-point functions are closed (we call
such systems autonomous). The Hamiltonian H charac-
terizing such a system (hence satisfying (15)), contains 10
parameters. As it was seen from the previous section, of
the parameters entering H , only five parameters enter in
the evolution equation of the two-point functions. All of
these are expressible in terms of the symmetrized (with
respect to permutation) Hamiltonian H̄. It is easily seen

that as H satisfies (15), H̄ satisfies (15) as well. So the
system characterized by H̄ , is autonomous as well. Such
a system contains 6 independent rates. In fact, one can
write H̄ as

H̄ =






−2r1 − r2 r3 r3 r5

r1 −r3 − r7 − r4 r7 r6

r1 r7 −r3 − r7 − r4 r6

r2 r4 r4 −r5 − 2r6





 ,

(39)

with
r1 + r2 + r3 = r4 + r5 + r6. (40)

Of the five parameters entering the evolution equation of
the two-point function, only three parameters determine
the energy-spectrum. These are µ, ν, and λ:

µ = r7 + r4 − r1 − r2 = r7 + r3 − r5 − r6,

ν = −r7 − r1 − r2 − r3 = −r7 − r4 − r5 − r6,

λ = −r1 + r3 + r4 + r6

2
. (41)

From these relations, it is seen that

ν ≤ −|µ| ≤ 0,

ν ≤ λ ≤ 0. (42)

As the rates are nonnegative, if ν = 0, then H̄ = 0, which
makes the two-point functions constant. Assuming ν �= 0,
one can scale time and make ν = −1. So, apart from a
time-scale, there are only two parameters determining the
energy-spectrum, µ and λ:

|µ| ≤ 1,

−1 ≤ λ ≤ 0,

ν = −1. (43)

It can be shown that the whole region of the above is
physical. That is, corresponding to any λ and µ satisfy-
ing the above inequalities, there are autonomous systems
yielding the desired λ and µ. To prove this, first consider
four specific systems:
• r1 = r6 = 1, r2 = r3 = r4 = r5 = r7 = 0,

⇒ (µ, λ) = (−1,−1).
• r2 = r5 = 1, r1 = r3 = r4 = r6 = r7 = 0,

⇒ (µ, λ) = (−1, 0).
• r3 = r4 = 1, r1 = r2 = r5 = r6 = r7 = 0,

⇒ (µ, λ) = (1,−1).
• r7 = 1, r1 = r2 = r3 = r4 = r5 = r6 = 0,

⇒ (µ, λ) = (1, 0).
Any point (µ, λ) in the region described by (43), can be
written as

(µ, λ) = c1(−1,−1)+c2(−1, 0)+c3(1,−1)+c4(1, 0), (44)

where ca’s are nonnegative. A system with the rates

ri =
4

∑

a=1

ca rai, (45)

where rai is the rate ri of the a’th system introduced
above, gives the desired (µ, λ).
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5 Dynamic phase transitions in the two-point
function

It was shown in the previous section, that for any nonzero
Hamiltonian ν �= 0, so that one can normalize ν to −1. In
section 3, it was shown that the energies entering the two-
point function are 0, E1 := µ−1, and µ(z+z−1)−2, where
in the thermodynamic limit |z| = 1, or at most one non-
unimodular z exists, the value of which comes from (38).
This is provided the absolute-value of the left-hand side
of (38) is less than one. So, the energies (apart from 0) are
E1, any number in the interval I0 := [−2−2|µ|,−2+2|µ|],
and possibly

E2 := λ − 1 +
µ2

λ + 1
. (46)

The largest relaxation time of the two-point function is
−E−1

max, where Emax is the largest nonzero value of the
energy spectrum. The relaxation time of the one-point
function is −E−1

1 . The fact that the energy spectrum of
the one-point function consists of a single value, is a re-
sult of the translational-invariance of the initial state of
the system. Otherwise, there would be many energies for
the one-point function, which could lead to a dynamical
phase-transition in the one-point function [30–33]. The
comparison of the relaxation times of the two-point- and
the one-point-functions, is a comparison of Emax and E1.
If the former is larger, the largest relaxation time of the
two-point function is larger than the relaxation time of the
one-point function (the slow phases). If the two are equal,
the relaxation-times are equal (the fast phases). So, the
relation of E1, E2, and I0, determines the relaxation be-
havior of the two-point function (its dynamical phase). It
is seen that

I0 < E1, µ > −1
3
,

E1 ∈ I0, µ < −1
3
, (47)

where |µ| ≤ 1 has also been used. If E1 = Emax, then
the relaxation time of the one-point function is equal to
the largest relaxation time of the two-point function. If
E1 < Emax, the the largest relaxation time of the two-
point function is larger.

For E2 to be among the energies, the absolute value of
the left-hand side of (38) should be less than one. So,

� ∃E = E2, λ < |µ| − 1,

∃E = E2, λ > |µ| − 1. (48)

Finally,

(λ+1)(E2 −E1) = λ2 +µ2−λµ+λ−µ =: f(µ, λ), (49)

from which (using λ + 1 is nonnegative),

E2 < E1, f(µ, λ) < 0,

E2 > E1, f(µ, λ) > 0. (50)

f = 0 is an ellipse, the interior points of which correspond
to E2 < E1, and the exterior points of which correspond
to E2 > E1.

(−1,−1)

(−1, 0) (−1/3, 0) (1, 0)
(0, 0)

(−1/3,−2/3)

(0,−1) (1,−1)(−1/3,−1)

I

II V

III

III

IV

Fig. 1. The dynamical phase structure in the (µ, λ) plane.

These three inequalities divide the whole phase space
(|µ| ≤ 1, 1 ≤ λ ≤ 0) into five phases:

I) µ < − 1
3 , λ < |µ| − 1.

In this phase, E1 ∈ I0, and E2 is not an energy. This
is the slower phase, and the largest energy is Emax =
−2 − 2µ.

II) µ < − 1
3 , λ > |µ| − 1.

In this phase, E1 ∈ I0, and E2 is an energy, in fact
the largest one. This is the slowest phase, and the
largest energy is Emax = −1 + λ + µ2

λ+1 .

III) µ > − 1
3 , λ < |µ| − 1.

In this phase, E1 > I0, and E2 is not an energy.
This is the fastest phase, and the largest energy is
Emax = −1 + µ.

IV) µ > − 1
3 , |µ| − 1 < λ <

µ−1+
√

(1+3µ)(1−µ)

2 .

In this phase, E1 > I0, E2 is an energy, and E2 <
E1. This is the fast phase, and the largest energy is
Emax = −1 + µ.

V) µ > − 1
3 , λ >

µ−1+
√

(1+3µ)(1−µ)

2 .

In this phase, E1 > I0, E2 is an energy, and E2 >
E1. This is the slow phase, and the largest energy is
Emax = −1 + λ + µ2

λ+1 .

This phase structure is summarized in Figure 1.
As previously mentioned, these phases arise from the

fact that the energy-spectrum of the two-point function
consists of a continuous part, an energy equal to the en-
ergy appearing in the one-point function, and possibly an-
other energy. This shows that the relaxation of the two-
point function is at least as slow as that of the one-point
function, and may be slower, depending on the relative
position of the discrete and continuous parts of the spec-
trum. The fast phases (phases III and IV), are those in
them the relaxation time of the one- and two-point func-
tions are equal, while in the slow phases (phases I, II,
and V), the relaxation of the two-point function is slower
than that of the one-point function.
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6 A one-parameter family as an example

Consider a system with the Hamiltonian

H =
1
4







−3 + 3ω ω ω 1 − ω
1 − ω −3ω ω 1 − ω
1 − ω ω −3ω 1 − ω
1 − ω ω ω −3 + 3ω





 . (51)

This Hamiltonian describes a system with the following
reactions.

∅A → any other state, with the rate ω/4,
A∅ → any other state, with the rate ω/4,
∅∅ → any other state, with the rate (1 − ω)/4,

AA → any other state, with the rate (1 − ω)/4.
(52)

It is seen that for this system,

H̄ = 2H, (53)

and

µ = −1 + 2ω,

λ = −1
2
. (54)

For this system, ρ defined through (28) is equal to
zero, hence there is no term proportional to eE1 t in the
right-hand side of (30). However, it is seen that adding
a term

H1 = r







−1 0 0 0
0 0 0 1
0 0 0 1
1 0 0 −2





 , (55)

to the Hamiltonian H in (51), changes the values of ρ, ν,
µ, and λ to

ρ = r,

ν = − 1 − 2r,

µ = − 1 − 2r + 2ω,

λ = − 1
2
− r. (56)

For small values of r, one can use ν = 1, and µ and λ as
in (54). Then, with different values of ω, this system can
exist in all the above five phases:

phase I, 0 ≤ ω <
1
4
,

phase II,
1
4

< ω <
1
3
,

phase V,
1
3

< ω <
5 −√

5
8

,

phase IV,
5 −√

5
8

< ω <
3
4
,

phase III,
3
4

< ω ≤ 1. (57)

It is seen that increasing ω, the system undergoes phase
transitions from the phase I to II, then V, IV, and fi-
nally III.
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